Target-enclosed seismic imaging
نویسندگان
چکیده
Seismic reflection data can be redatumed to a specified boundary in the subsurface by solving an inverse (or multidimensional deconvolution) problem. The redatumed data can be interpreted as an extended image of the subsurface at the redatuming boundary, depending on the subsurface offset and time. We retrieve targetenclosed extended images by using two redatuming boundaries, which are selected above and below a specified target volume. As input, we require the upgoing and downgoing wavefields at both redatuming boundaries due to impulsive sources at the earth’s surface. These wavefields can be obtained from actual measurements in the subsurface, they can be numerically modeled, or they can be retrieved by solving a multidimensional Marchenko equation. As output, we retrieved virtual reflection and transmission responses as if sources and receivers were located at the two target-enclosing boundaries. These data contain all orders of reflections inside the target volume but exclude all interactions with the part of the medium outside this volume. The retrieved reflection responses can be used to image the target volume from above or from below. We found that the images from above and below are similar (given that the Marchenko equation is used for wavefield retrieval). If a model with sharp boundaries in the target volume is available, the redatumed data can also be used for two-sided imaging, where the retrieved reflection and transmission responses are exploited. Because multiple reflections are used by this strategy, seismic resolution can be improved significantly. Because target-enclosed extended images are independent on the part of the medium outside the target volume, our methodology is also beneficial to reduce the computational burden of localized inversion, which can now be applied inside the target volume only, without suffering from interactions with other parts of the medium.
منابع مشابه
Optimizing design of 3D seismic acquisition by CRS trace interpolation
Land seismic data acquisition in most of cases suffers from obstacles in fields which deviates geometry of the real acquired data from what was designed. These obstacles will cause gaps, narrow azimuth and offset limitation in the data. These shortcomings, not only prevents regular trace distribution in bins, but also distorts the subsurface image by reducing illumination of the target formatio...
متن کاملAnalyzing the Illumination and Resolution in Seismic Survey Designing
Seismic modeling aids the geophysicists to have a better understanding of the subsurface image before the seismic acquisition, processing, and interpretation. In this regard, seismic survey modeling is employed to make a model close to the real structure and to obtain very realistic synthetic seismic data. The objective of this study is to analyze the resolution and illumination of the fault by...
متن کاملUnified seismic-wave imaging - from data space to model space
Under operator, matrix and inverse theory, seismic-wave imaging can be considered a unified process—mapping from data space to model space. The main topics in seismic-wave imaging include (1) seismic-data interpolation, regularization and redatuming, which mainly decrease the imaging noise; (2) seismic-wave illumination analysis, which predicts whether a target reflector can be imaged and evalu...
متن کاملA Target Displacement for Static Pushover Analysis to Estimate Seismic Demand of Eccentrically Braced Frames
A main challenge for performance-based seismic engineering is to develop simple, practical and precise methods for analyzing designed buildings and assessing existing structures to satisfy considerable performance objectives. Pushover analysis is a simplified nonlinear analysis technique that can be implemented for estimating the dynamic demands imposed on a structure under earthquake excitatio...
متن کاملImproving seismic image in complex structures by new solving strategies in the CO-CRS and the CO-CDS methods
Conventional seismic imaging possesses problem in exposing structural detail in complex geological media. Nevertheless, some recently introduced methods reduce this ambiguity to some extent, by using data based imaging operator or emancipation from the macro-velocity model. The zero offset common reflection surface (ZO-CRS) stack method is a velocity independent imaging technique which is frequ...
متن کامل